

User and Algorithm Models Andy Endal

14 February 1995

Topics

Boundary Conditions

Science User Model

- Model components
- Derived parameters
- Design utilization

Processing Scenarios

- Ad Hoc Working Group on Production (AHWGP)
- New baseline and analysis
- Impact of changes since SDR

System Performance Model

- Model description
- Results

Issues

Modeling Context

Boundary Conditions

Boundary Conditions Derive from Policy and/or Assumptions

- 1. User Community (policy)
 - User models describe the Earth Science / Global Change users
- 2. Data Distribution (assumption / cost constraint)
 - Distribute data to the users at twice the rate of data production
 - 50% electronic distribution; 50% by media
- 3. Data Processing (assumption / engineering parameter)
 - Peak processing capacity at least 4 times average requirement
- 4. Data Reprocessing (assumption / engineering parameter)
 - Phased capacity starting with 0.3X (Launch 2 years) for Algorithm Integration and Test
 - Building to 4.2X (Launch + 2 years) to include reprocessing

Boundary Conditions (cont.)

- 5. Data Archiving (assumption / engineering parameter)
 - Archive Standard Product data (Levels 1-3)
 - Twelve-month rolling archive for Level 0 data
 - Retain Level 0 (after 12 months) only if no Level 1a product is available
 - Capacity for six months of Standard Product data required to support reprocessing

Science User Model

Current User Model is a Refinement of the SDR Model

User Model Components

Reference:

ECS User Characterization Methodology and Results (September 1994)

Science User Scenarios

- Step-by-step description of system usage for science research
 - User request => Service invocation & data => results
- 27 scenarios collected/validated during past twelve months
- Analyzed to extract relative frequency of service invocation in 15 categories (e.g., single-site coincidence search, data inspection, ...)

Science User Demographics

- Utilized to assign number of users to each scenario
- Based on 1993 survey of articles in science research journals

Model Components (cont.)

Relative Interest in Data Products

- Five user disciplines (atmosphere, land & hydrology, oceans, cryosphere, interdisciplinary)
- Relative populations based on memberships in professional societies
- Used to size loads at specific DAACs and for specific servers

Projected total number of user accesses per year

- Based on statistics and projections from participating DAACs
- Independent estimates by B. Barkstrom (LaRC) and M. James (GSFC)

Daily distribution of user accesses

September 1994 statistics from "killian" server at GSFC

Geographic distribution of users

• Distribution of EOS investigators, corrected for international users

Analysis: Service Invocations

$$f(S_i) = \sum_j (n_{ij} \times U_j) / R$$

where:

 $f(S_i)$ = proportion of invocations for service S_i [$\Sigma_i f(S_i) = 1$]

 n_{ij} = number of times service S_i is invoked in scenario j (in 1 year)

U_j = number of users associated with scenario j

R = total rate of invocations of all services = $\sum_{i} \sum_{j} (n_{ij} \times U_{j})$

Analysis: Access Frequency

$$r(t_{EST}) = R \times \sum_{K} [f_{K} \mathcal{O}(t_{K} + \Delta_{K->L})] / 525960 (min./yr.)$$

where:

= rate of service invocation at Eastern Standard Time t_{EST} r(t_{EST})

R = total rate of service invocation (see previous slide)

= fraction of users in time zone K

 $\emptyset(t_K)$ = fraction of service invocations originating at local time t_K

= time difference from user zone K to EST

705-CD-002-001 AE-10

Analysis: Accesses by DAAC

$$P_{L} = P_{L@L} + \sum_{M \neq L} P_{M->L}$$

where:

P_L = service invocation probability at DAAC L

P_{L@L} = probability user will access ECS through DAAC L and use local services

P_{M->L} = probability of inter-DAAC service request from DAAC M to DAAC L

	Early 1997	Early 1998	Early 1999	Mid 1999	
ASF	0	0.05	0.04	0.04	
EDC	0	0.20	0.17	0.15	
GSFC	0.44	0.19	0.22	0.24	
JPL	0	0.12	0.12	0.12	
LaRC	0.44	0.19	0.22	0.24	
MSFC	0.12	0.20	0.17	0.15	
NSIDC	0	0.05	0.04	0.04	
Totals	1.00	1.00	1.00	1.00	

Determined primarily by relative interest in data products (i.e., DAAC discipline and size of discipline community)

Design Utilization

Technical Baseline: For Each DAAC @ 5 Epochs

- Archive Volume
- Volume Distributed
- Number of Users / Year

Accesses / Year

System Model Parameters

- Distribution of requests by service type
- Access frequency by DAAC, and by time of day

Design Parameters Developed at Request of Design Teams

- Distribution of browse & subsetting requests by file size
- Request frequency by pyramid layer
- etc.

End-to-end scenarios for design validation

Processing Scenarios

Current Model is a Major Departure from SDR

Processes and Physical Files

Ad Hoc Working Group on Production (AHWGP)

- Joint effort by Instrument Teams and ECS
- Covers Standard Product inputs, processing, outputs
- TRMM and EOS AM-1 instruments (ESC Release A and B)

Information Provided by Instrument Software Teams

Designed to support ECS modeling requirements

Static Models Used to Validate Inputs

- Compared to SPSO database to flag changes for validation
- Provided to Instrument Teams to validate timelines

Dynamical Model Used to Identify Disconnects

AHWGP Process (linear)

Validation Planned as Review of Models

AHWGP Process (actual)

Extensive Validation and Iteration at All Stages

Products Summary

Instrument Teams Inputs

- Process Descriptions (production scenarios)
- File Descriptions (archive, permanent, interim, temporary)
- Process Phasing (time-line by calendar quarter)

Converted to Tables for Model Ingest

- XX Process Descriptions
- YY File Descriptions

Analysis and Validation Based on Static Models

- Processing Timelines (MFLOPS by quarter)
- Volume Timelines (GBytes / day by quarter)
- Total Processing / Reprocessing and Archive Requirements
- DAAC-to-DAAC Traffic for WAN Sizing (input to CSMS design)

MOPITT Sample Scenario

MOPITT Daily Processing at 3Q 1999

MOPITT Process Descriptions

Process ID	Process Name	Processing Site	Epochs	Input File IDs		Amount Read (Fraction)	Output File ID		Amt rtten (Fraction)	Millions of Floating Point Ops per E ecution	No. of E ec.
MOPL1	Level 1 Processing	LaRC	ghijklmnopqrstuvwx	MOP-00	1	1	MOP-01	1	1	16,800	1.00
				MOP-CH	1	1	MOP-01D	1	1		
				MOP-IP1	1	1	MOP-CH	1	1		
MOPL1Qi-D		LaRC	hijklmnopqrstuvwx	MOP-01	1	1	MOP-01Q-D	1	1	900	1.00
			1	MOP-01D	1	1					
MOPL2-E	Level 2 Processing	LaRC	jklmno	MOP-01	1	1	MOP-02	1	1	1,502,250	1.00
				MOP-IP2	1	1	MOP-02D	1	1		
				MOP-AX	1	1	MOP-02B	1	1		
				ANC_EDC_DEM	1	1					
				ANC_NMC_PROF	4	1					
				MOD30_L2_G	585	1					
				ANC_NMC_SURF	4	1					
				MODO6_L2_G	585	1					
				MOP-AC	1	1					
	+		-	MOP-SurfP MOP-OC	1	1				-	
	+		 	MOP-OC MOP-NC	1	1 1					
MOPL2Qi-D	Level 2 QA (inline)	LaRC	jklmnopqrstuvwx	MOP-02	1	1	MOP-02Q-D	1	1	1,350	1.00
			Ì	MOP-02D	1	1	Ī				

705-CD-002-001 AE-18

MOPITT File Descriptions

File ID	Instrument	File Name		Archive Site		File Size (MB)	lemporal Coverage (Minutes)
MOP-00	MOPITT	MOPITT Level-0	MOPOO	LaRC	Permanent	255.24	1,440.00
MOP-01	MOPITT	MOPITT Level-1	MOPO1	LaRC	Archive	101	1,440.00
MOP-IP1	MOPITT			LaRC	Permanent	1	0.00
MOP-CH	MOPITT			LaRC	Permanent	1	43,200.00
MOP-01D	MOPITT			Other	Interim	255.24	0.00
MOP-01Q-D	MOPITT	Level-1 QA diagnostics		Other	Interim	10	0.00
MOP-IP2	MOPITT			LaRC	Permanent	1	0.00
MOP-AX	MOPITT			LaRC	Permanent	50	0.00
MOP-AC	MOPITT			LaRC	Permanent	1.4	0.00
MOP-OC	MOPITT	Ancillary Ozone Climatology		LaRC	Permanent	1.4	0.00
MOP-NC	MOPITT	Ancillary N20 Climatology		LaRC	Permanent	1.4	0.00
MOP-SurfP	MOPITT	Ancillary Surface Properties		LaRC	Permanent	5	0.00
MOP-02	MOPITT	MOPITT Level-2 product		LaRC	Archive	74.7	1,440.00
MOP-02D	MOPITT	Temporary diagnostic files		Other	Interim	100	0.00
MOP-02B	MOPITT	Level-2 Browse Products		LaRC	Archive	10	1,440.00
MOP-02Q-D	MOPITT	Level-2 QA diagnostic files		Other	Interim	10	0.00

705-CD-002-001 AE-19

MOPITT Scenario Comments

MOPITT Processing at LaRC

MODIS Products Transferred from GSFC to LaRC

- MOPITT assumptions:
 - MOD-06 (atmospheric profiles) = 1 daily file of 140 MBytes (MB)
 - MOD-30 (cloud parameters) = 1 daily file of 100 MB
- MODIS plans for L2 products:
 - MOD06_L2 = 585 granules/day @ 17.52 MB = 10.2 GB / day
 - MOD30_L2 = 585 granules/day @ 35.79 MB = 20.9 GB / day
- Preprocessing MODIS files at GSFC can reduce WAN traffic and LaRC file handling

AHWGP Provides Forum for Identification of Algorithm Interface Issues

Advantages to Instrument Teams as well as ECS

Processing Estimates

Instrument Team Inputs to AHWGP Expressed as

- "Theoretical" Floating_Point_Operations per Execution
- Execution Frequency

Based on Operations Counts or Normalized Benchmarks

- Divide by allowed execution time to get "theoretical" FLOPS
- Multiply by 4 to get required COTS rating ("peak" FLOPS)

Technical Baseline Reflects "Theoretical" FLOPS

All Graphs in this Presentation Show "Peak" FLOPS

Includes TRMM and AM-1 Instruments Only

Processing by Instrument

Comparison to SDR Baseline

TRMM / AM-1 only

Total Processing Req.

Algorithm Integration & Test Estimate Based on Engineering Judgment Reprocessing Profile Based on UARS Experience Total (AI&T + Processing + Reprocessing):

- **= 0.3 X at L-2 years**
- = 1.2 X at L-1 year
- = 2.2 X at L+1 year
- **= 4.2 X at L+2 years**

where X = at-launch processing for pre-launch period

X = quarterly processing for post-launch period

TRMM / AM-1 Total

Data Volume by Instrument

Product Levels 1-3

Comparison to SDR Baseline

TRMM / AM-1 only Product Levels 1-3

Archive Requirements

All Level 1-3 Standard Product Data

6 Months Spare Capacity to Support Reprocessing

Level 0 Archived if No Level 1A Product (CERES, LIS, MOPITT)

1 Year Rolling Archive for Level 0 (MISR, MODIS)

No Level 0 for ASTER

Product Archives

AHWGP Impact

50% Increase in Estimated Processing Requirement

- Some New Benchmarking Results
- Includes Requested Contingency for ASTER and MISR
- Continues Previous Contingency for MODIS

55% Decrease in Estimated Product Archive Requirement

- Major Savings in MODIS Ocean Products due to File Reorganization
 - will require some processing-on-demand or subscriptions to interim products
- Other Instruments Have Also Reduced Data Volumes Based on File Definitions

Reduction in Data Volumes Affects Archives and Working Storage

Estimate 21% Reduction in Cost of COTS HW/SW for TRMM/AM-1 Standard Product Processing and Storage

System Performance Model

Comparison to SDR Models -

<u>Attribute</u>	<u>SDR</u>	<u>PDR</u>
Purpose	Architecture Trades	Design Trades
Perspective	Product	Process/File
Push/Pull	Separate	Coupled
Language	С	BONeS
Technique	Quasi-Dynamic	Dynamic
Method	Numerical Integration	Discrete Event
Resource Handling	Unconstrained	Constrained

Components in Simulation

		Р				R
		r				е
		0		N		а
		С		e	R	d
		е		t	0	Н
	D	S		W	b	е
	i	S		0	0	а
	S	0		r	t	d
	k	r	0	k	S	S
Ingest	Υ		Υ	Υ	Υ	Υ
Data Handler	Y		Y	Y	Y	Y
Processing	Y	Y	Y	Y		
Distribution	Υ	Υ	Υ	Υ		Υ

Sample Model Parameters

Data Handler at Each DAAC:

- Total Archive Disk Pool Size (MB)
- Total Number of I/O Channels
- Throughput of I/O Channels (MBytes/Second)
- Number of Robots
- Maximum Robot Movement Time (Seconds)
- Number of Read/Write Heads
- Maximum Tape Seek Time (Seconds)
- Number of I/O Channels for Archive Device
- Throughput of Read/Write Heads (MBytes/Second)
- Maximum Tape Rewind Time (Seconds)
- Number of Transactions into Archive/Data Server/...
- Storage Utilization

Modeling Results

Feedback / Interaction with Instrument Teams (AHWGP)

- Identified "Orphan" Data Products
- Resolved Temporal Disconnects in Coverage of Inputs / Outputs
- Revised AHWGP Scenarios for Better Process / File Organization

Single-Instrument Models in Validation (except MODIS)

Release A Instruments Integrated (CERES and LIS)

Feedback / Support to Design Teams

- Scheduling Rules for Standard Products Processing
- Improved Understanding of Processing Issues and Push / Pull Interactions

Next Steps

Improve User Model Data for Relative Interest in Data Products

Required for Release B Data Server Sizing (June '95 for IDR)

Continue AHWGP Collaboration with Instrument Teams

- Provide Design Feedback to ITs (now for TRMM)
- Add post-AM-1 Instruments (ongoing)

Complete Version 2 of Dynamical System Simulation

- Design Support for Release B (July '95 for IDR)*
- Support Trades for Algorithm Teams (through January '96)

* Release A does not need dynamical model due to decoupling

Issues

Address Engineering Boundary Conditions

- Improve Access to Data with Networks Limitations (July '95 for Rel. B IDR)
 - Strategies for precise data identification, subsetting, and incorporation of user methods
 - Need IDS participation
- Quantify Peak-to-Theoretical FLOPS Ratio (January '96 for Rel. B CDR)
 - Instrument Team algorithm benchmarking
 - ECS prototyping
- Develop QA and Reprocessing Scenarios with AHWGP (June '95 for Rel. A CDR)
 - Develop concensus on QA definitions and roles
 - Improve understanding of operational implications
 - Quantify reprocessing load (incl. DAAC-to-DAAC traffic)

Issues (cont.)

- Develop Subsetting / Data Prep Specifications for Instrument Data Dependencies with AHWGP (July '95 for Rel. B IDR)
 - Opportunity to reduce data transport and handling costs
 - Reduce algorithm integration risks